翻訳と辞書 |
elliptic curve point multiplication : ウィキペディア英語版 | elliptic curve point multiplication
Elliptic curve point multiplication is the operation of successively adding a point along an elliptic curve to itself repeatedly. It is used in elliptic curve cryptography (ECC) as a means of producing a trapdoor function. The literature presents this operation as scalar multiplication, thus the most common name is "elliptic curve scalar multiplication", as written in Hessian form of an elliptic curve. ==Basics== Given a curve, ''E'', defined along some equation in a finite field (such as ''E'': ), point multiplication is defined as the repeated addition of a point along that curve. Denote as for some scalar (integer) ''n'' and a point that lies on the curve, ''E''. This type of curve is known as a Weierstrass curve. The security of modern ECC depends on the intractability of determining ''n'' from given known values of ''Q'' and ''P''. It is known as the elliptic curve discrete logarithm problem.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「elliptic curve point multiplication」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|